skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Aiyyer, Anantha"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Sharma, Ashish (Ed.)
    Floods occur everywhere and in every season. Yet, most studies have focused only on annual maximum floods (AMFs), their climatology, and the associated impacts. Given that monthly/seasonal floods also cause significant damage and disruptions to daily life, this study may be the first to explore winter flood hydroclimatology, a predominantly a non-AMF season, and its associated large-scale climate drivers over the Coterminous US (CONUS). Using a mixed-effects model, we find that the influence of various hydroclimate predictors on winter floods is largely consistent within subregions. Antecedent land-surface conditions are crucial for winter floods in inland areas, while the Pacific sea surface temperatures (SSTs) significantly affects coastal watersheds. The Atlantic SSTs impact winter floods in the south and northeast, while atmospheric conditions influence the Midwest and California. Additional analysis reveals that damage from winter floods is more widespread compared to AMFs across the nation, affecting the entire eastern seaboard, Southwest US, and over the Great Lakes region. Thus, a comprehensive understanding of floods across all seasons (non-AMFs) is critical for developing effective mitigation measures, as it provides information on impacts and required compensation for smaller return period floods. 
    more » « less
    Free, publicly-accessible full text available May 1, 2026
  2. Abstract During certain years, a synoptic scale vortex called the monsoon onset vortex (MOV) forms within the northward advancing zone of precipitating convection over the Arabian Sea. The MOV does not form each year and the reason is unclear. Since the Madden‐Julian Oscillation (MJO) is known to modulate convection and tropical cyclones in the tropics, we examined its role in the formation of the MOV. While the convective and transition phases of the MJO do not always lead to MOV formation, the suppressed phase of the MJO hinders the formation of the MOV more consistently. This asymmetric relationship between the MJO and MOV can be partially explained by the modulation of the large‐scale environment, measured by a tropical cyclone genesis index. It also suggests that the Arabian Sea is generally near a critical state that is favorable for MOV formation during the monsoon onset period. 
    more » « less
  3. Abstract Studies have quantified the contribution of tropical cyclones (TCs) toward seasonal precipitation, but limited analysis is available on TC contribution toward seasonal streamflow over the southeastern and southcentral (SESC) United States (U.S.). Using an extensive network of hydroclimatic data that consists of 233 TC tracks and daily precipitation and streamflow, we estimate TC contribution toward precipitation and streamflow during the hurricane season over the SESC U.S. We found that TCs account for 12% of seasonal streamflow and 6% of seasonal precipitation over the region. Florida, North Carolina, and Louisiana have the highest fractional occurrence of TC‐generated annual maximum precipitation (∼20%–32%) and streamflow (∼15%–27%). We also found the fractional occurrence of TCs associated with peak‐over threshold precipitation (streamflow) events ranges from 5% to 8% in coastal regions (10%–20% over FL and 5%–10% over coastal NC). Increased antecedent moisture results in increased TCs contribution to streamflow leading to different land‐surface responses for similar hurricane events. 
    more » « less